せいしん

web&DeepLearningエンジニア系大学生。 東京大学/鹿児島→東京/Rails/DeepLearning/その他諸々 Qiita: https://qiita.com/shizuma blog: https://blog.seishin55.com

AWS Lambda+API Gatewayでディープラーニングモデルを簡易API化する方法

はじめに

ディープラーニングモデルを作成した後、できるだけ簡単にAPIとして利用できる形にしたいというモチベーションの元、サーバーなしにコードを実行することができるLambdaと簡単にAPIを作成できるAPI Gatewayの構成でそれを実現しました。

今回は入力を画像、出力は予測結果としてjsonを返すとします。つまり、できるものは以下のようなものを期待します。(デモは物体認識)

curl

もっとみる

物体認識モデルYOLOv3に完全勝利したM2Detの紹介

はじめに

一般物体認識はここ数年で大きな進化を遂げました。その中でも実用的に使いやすい&よく使われている(気がする)のはYOLO v3だと思います。それは、ある程度の予測精度を持ちながら推論速度もはやいというモデルになっているためです。

今回説明するのはそのYOLOv3に対して、予測精度も推論速度も上回るようなモデルのM2Detです。予測精度と推論速度はトレードオフはありますが、どちらをとって

もっとみる

一般物体認識YOLOv3のモデル構造

はじめに

一般物体認識とは、画像中の物体の位置を検出し、その物体の名前を予測するタスクになります。以前に下記の記事を書きましたが、そこでも扱ったようにYOLOv3は一般物体認識のモデルの中でも有用な手段のひとつです。今回はこのYOLOv3の中身をポイントとなるところに注目して、見ていきたいと思います。
YOLOv3: An Incremental Improvement

モデルの外観

YOL

もっとみる

Deep Learningによる表情認識の現状とその利用

表情認識とは?

人の感情を表情から判定するタスクを表情認識(Facial Expression Recognition)といいます。タスクとしては、入力の顔画像からその顔の表情ラベルを予測するクラス分類になります。よくあるデータセットでは、5つ~7つ程度のラベルを予測しています。タスクとしては単純なクラス分類になります。

感情の認識の利用シーンはいくつも考えられれます。例えば、飲食店の利用者の

もっとみる

ゼロからはじめるRaspberry Pi [OSの書き込み/SSH接続]

ゼロ知識からRaspberry Piを使う必要があったため、その過程を書きたいと思います。ゼロからはじめて、MacでRaspberry PiにSSH接続できるところまで行います。

目次

・必要機材
・OSの書き込み
・SSH接続
・(おまけ) Python環境構築

必要機材

使ったのは以下のRaspberry Pi。

箱を開けると以下のような機材が入っています。

このキット以外に以下の

もっとみる

Deep Learningによる一般物体認識の手法の把握と実利用のためのまとめ

目次

・一般物体認識とは
・モデルの性能を知るための評価指標
 ・IoUの閾値
    ・precision-recallグラフ
・一般物体認識を使う
    ・APIを利用する
    ・Keras実装を動かす(YOLOv3)
    ・darknetで学習済みモデルをOpenCVで動かす(YOLOv3)
・一般物体認識の最先端

次の記事で書こうと思っていること。
・YOLOv3の説明
・オ

もっとみる