NFTの開発方法~Binance Smart Chain上で

さて、今日は初心者でもわかるようにNFTの発行方法をなどをお伝えできればと思います。

#こちらの製品は、初心者の方がプライベートで遊び感覚でトークンを発行できるためのコードです。
#決して製品には利用しないてください。また会社や個人としてNFTトークンを発行をご希望の場合は、ぜひ弊社まで無料見積もりをお渡しします。
お問い合わせは、こちらまで!

いきなりNFTを発行する前に、まずはBEP20を発行してみましょう。

Compile and Deploy BEP20 Contract方法について

まずは、こちらのサイトに行ってください。
Remix IDE: https://remix.ethereum.org

画像1

言語をSolidtyを選んでください

画像2

こちらにソースコードを用意したので、こちらのコードをREMIXに貼り付けてください。

pragma solidity 0.5.16;
interface IBEP20 {
 /**
  * @dev Returns the amount of tokens in existence.
  */
 function totalSupply() external view returns (uint256);
 /**
  * @dev Returns the token decimals.
  */
 function decimals() external view returns (uint8);
 /**
  * @dev Returns the token symbol.
  */
 function symbol() external view returns (string memory);
 /**
 * @dev Returns the token name.
 */
 function name() external view returns (string memory);
 /**
  * @dev Returns the bep token owner.
  */
 function getOwner() external view returns (address);
 /**
  * @dev Returns the amount of tokens owned by `account`.
  */
 function balanceOf(address account) external view returns (uint256);
 /**
  * @dev Moves `amount` tokens from the caller's account to `recipient`.
  *
  * Returns a boolean value indicating whether the operation succeeded.
  *
  * Emits a {Transfer} event.
  */
 function transfer(address recipient, uint256 amount) external returns (bool);
 /**
  * @dev Returns the remaining number of tokens that `spender` will be
  * allowed to spend on behalf of `owner` through {transferFrom}. This is
  * zero by default.
  *
  * This value changes when {approve} or {transferFrom} are called.
  */
 function allowance(address _owner, address spender) external view returns (uint256);
 /**
  * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
  *
  * Returns a boolean value indicating whether the operation succeeded.
  *
  * IMPORTANT: Beware that changing an allowance with this method brings the risk
  * that someone may use both the old and the new allowance by unfortunate
  * transaction ordering. One possible solution to mitigate this race
  * condition is to first reduce the spender's allowance to 0 and set the
  * desired value afterwards:
  * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
  *
  * Emits an {Approval} event.
  */
 function approve(address spender, uint256 amount) external returns (bool);
 /**
  * @dev Moves `amount` tokens from `sender` to `recipient` using the
  * allowance mechanism. `amount` is then deducted from the caller's
  * allowance.
  *
  * Returns a boolean value indicating whether the operation succeeded.
  *
  * Emits a {Transfer} event.
  */
 function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
 /**
  * @dev Emitted when `value` tokens are moved from one account (`from`) to
  * another (`to`).
  *
  * Note that `value` may be zero.
  */
 event Transfer(address indexed from, address indexed to, uint256 value);
 /**
  * @dev Emitted when the allowance of a `spender` for an `owner` is set by
  * a call to {approve}. `value` is the new allowance.
  */
 event Approval(address indexed owner, address indexed spender, uint256 value);
}
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
contract Context {
 // Empty internal constructor, to prevent people from mistakenly deploying
 // an instance of this contract, which should be used via inheritance.
 constructor () internal { }
 function _msgSender() internal view returns (address payable) {
   return msg.sender;
 }
 function _msgData() internal view returns (bytes memory) {
   this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
   return msg.data;
 }
}
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
 /**
  * @dev Returns the addition of two unsigned integers, reverting on
  * overflow.
  *
  * Counterpart to Solidity's `+` operator.
  *
  * Requirements:
  * - Addition cannot overflow.
  */
 function add(uint256 a, uint256 b) internal pure returns (uint256) {
   uint256 c = a + b;
   require(c >= a, "SafeMath: addition overflow");
   return c;
 }
 /**
  * @dev Returns the subtraction of two unsigned integers, reverting on
  * overflow (when the result is negative).
  *
  * Counterpart to Solidity's `-` operator.
  *
  * Requirements:
  * - Subtraction cannot overflow.
  */
 function sub(uint256 a, uint256 b) internal pure returns (uint256) {
   return sub(a, b, "SafeMath: subtraction overflow");
 }
 /**
  * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
  * overflow (when the result is negative).
  *
  * Counterpart to Solidity's `-` operator.
  *
  * Requirements:
  * - Subtraction cannot overflow.
  */
 function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
   require(b <= a, errorMessage);
   uint256 c = a - b;
   return c;
 }
 /**
  * @dev Returns the multiplication of two unsigned integers, reverting on
  * overflow.
  *
  * Counterpart to Solidity's `*` operator.
  *
  * Requirements:
  * - Multiplication cannot overflow.
  */
 function mul(uint256 a, uint256 b) internal pure returns (uint256) {
   // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
   // benefit is lost if 'b' is also tested.
   // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
   if (a == 0) {
     return 0;
   }
   uint256 c = a * b;
   require(c / a == b, "SafeMath: multiplication overflow");
   return c;
 }
 /**
  * @dev Returns the integer division of two unsigned integers. Reverts on
  * division by zero. The result is rounded towards zero.
  *
  * Counterpart to Solidity's `/` operator. Note: this function uses a
  * `revert` opcode (which leaves remaining gas untouched) while Solidity
  * uses an invalid opcode to revert (consuming all remaining gas).
  *
  * Requirements:
  * - The divisor cannot be zero.
  */
 function div(uint256 a, uint256 b) internal pure returns (uint256) {
   return div(a, b, "SafeMath: division by zero");
 }
 /**
  * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
  * division by zero. The result is rounded towards zero.
  *
  * Counterpart to Solidity's `/` operator. Note: this function uses a
  * `revert` opcode (which leaves remaining gas untouched) while Solidity
  * uses an invalid opcode to revert (consuming all remaining gas).
  *
  * Requirements:
  * - The divisor cannot be zero.
  */
 function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
   // Solidity only automatically asserts when dividing by 0
   require(b > 0, errorMessage);
   uint256 c = a / b;
   // assert(a == b * c + a % b); // There is no case in which this doesn't hold
   return c;
 }
 /**
  * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
  * Reverts when dividing by zero.
  *
  * Counterpart to Solidity's `%` operator. This function uses a `revert`
  * opcode (which leaves remaining gas untouched) while Solidity uses an
  * invalid opcode to revert (consuming all remaining gas).
  *
  * Requirements:
  * - The divisor cannot be zero.
  */
 function mod(uint256 a, uint256 b) internal pure returns (uint256) {
   return mod(a, b, "SafeMath: modulo by zero");
 }
 /**
  * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
  * Reverts with custom message when dividing by zero.
  *
  * Counterpart to Solidity's `%` operator. This function uses a `revert`
  * opcode (which leaves remaining gas untouched) while Solidity uses an
  * invalid opcode to revert (consuming all remaining gas).
  *
  * Requirements:
  * - The divisor cannot be zero.
  */
 function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
   require(b != 0, errorMessage);
   return a % b;
 }
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
 address private _owner;
 event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
 /**
  * @dev Initializes the contract setting the deployer as the initial owner.
  */
 constructor () internal {
   address msgSender = _msgSender();
   _owner = msgSender;
   emit OwnershipTransferred(address(0), msgSender);
 }
 /**
  * @dev Returns the address of the current owner.
  */
 function owner() public view returns (address) {
   return _owner;
 }
 /**
  * @dev Throws if called by any account other than the owner.
  */
 modifier onlyOwner() {
   require(_owner == _msgSender(), "Ownable: caller is not the owner");
   _;
 }
 /**
  * @dev Leaves the contract without owner. It will not be possible to call
  * `onlyOwner` functions anymore. Can only be called by the current owner.
  *
  * NOTE: Renouncing ownership will leave the contract without an owner,
  * thereby removing any functionality that is only available to the owner.
  */
 function renounceOwnership() public onlyOwner {
   emit OwnershipTransferred(_owner, address(0));
   _owner = address(0);
 }
 /**
  * @dev Transfers ownership of the contract to a new account (`newOwner`).
  * Can only be called by the current owner.
  */
 function transferOwnership(address newOwner) public onlyOwner {
   _transferOwnership(newOwner);
 }
 /**
  * @dev Transfers ownership of the contract to a new account (`newOwner`).
  */
 function _transferOwnership(address newOwner) internal {
   require(newOwner != address(0), "Ownable: new owner is the zero address");
   emit OwnershipTransferred(_owner, newOwner);
   _owner = newOwner;
 }
}
contract BEP20Token is Context, IBEP20, Ownable {
 using SafeMath for uint256;
 mapping (address => uint256) private _balances;
 mapping (address => mapping (address => uint256)) private _allowances;
 uint256 private _totalSupply;
 uint8 private _decimals;
 string private _symbol;
 string private _name;
 constructor() public {
   _name = "DEF";
   _symbol = "DEF TOKEN";
   _decimals = 18;
   _totalSupply = 10000;
   _balances[msg.sender] = _totalSupply;
   emit Transfer(address(0), msg.sender, _totalSupply);
 }
 /**
  * @dev Returns the bep token owner.
  */
 function getOwner() external view returns (address) {
   return owner();
 }
 /**
  * @dev Returns the token decimals.
  */
 function decimals() external view returns (uint8) {
   return _decimals;
 }
 /**
  * @dev Returns the token symbol.
  */
 function symbol() external view returns (string memory) {
   return _symbol;
 }
 /**
 * @dev Returns the token name.
 */
 function name() external view returns (string memory) {
   return _name;
 }
 /**
  * @dev See {BEP20-totalSupply}.
  */
 function totalSupply() external view returns (uint256) {
   return _totalSupply;
 }
 /**
  * @dev See {BEP20-balanceOf}.
  */
 function balanceOf(address account) external view returns (uint256) {
   return _balances[account];
 }
 /**
  * @dev See {BEP20-transfer}.
  *
  * Requirements:
  *
  * - `recipient` cannot be the zero address.
  * - the caller must have a balance of at least `amount`.
  */
 function transfer(address recipient, uint256 amount) external returns (bool) {
   _transfer(_msgSender(), recipient, amount);
   return true;
 }
 /**
  * @dev See {BEP20-allowance}.
  */
 function allowance(address owner, address spender) external view returns (uint256) {
   return _allowances[owner][spender];
 }
 /**
  * @dev See {BEP20-approve}.
  *
  * Requirements:
  *
  * - `spender` cannot be the zero address.
  */
 function approve(address spender, uint256 amount) external returns (bool) {
   _approve(_msgSender(), spender, amount);
   return true;
 }
 /**
  * @dev See {BEP20-transferFrom}.
  *
  * Emits an {Approval} event indicating the updated allowance. This is not
  * required by the EIP. See the note at the beginning of {BEP20};
  *
  * Requirements:
  * - `sender` and `recipient` cannot be the zero address.
  * - `sender` must have a balance of at least `amount`.
  * - the caller must have allowance for `sender`'s tokens of at least
  * `amount`.
  */
 function transferFrom(address sender, address recipient, uint256 amount) external returns (bool) {
   _transfer(sender, recipient, amount);
   _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "BEP20: transfer amount exceeds allowance"));
   return true;
 }
 /**
  * @dev Atomically increases the allowance granted to `spender` by the caller.
  *
  * This is an alternative to {approve} that can be used as a mitigation for
  * problems described in {BEP20-approve}.
  *
  * Emits an {Approval} event indicating the updated allowance.
  *
  * Requirements:
  *
  * - `spender` cannot be the zero address.
  */
 function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
   _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
   return true;
 }
 /**
  * @dev Atomically decreases the allowance granted to `spender` by the caller.
  *
  * This is an alternative to {approve} that can be used as a mitigation for
  * problems described in {BEP20-approve}.
  *
  * Emits an {Approval} event indicating the updated allowance.
  *
  * Requirements:
  *
  * - `spender` cannot be the zero address.
  * - `spender` must have allowance for the caller of at least
  * `subtractedValue`.
  */
 function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
   _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "BEP20: decreased allowance below zero"));
   return true;
 }
 /**
  * @dev Creates `amount` tokens and assigns them to `msg.sender`, increasing
  * the total supply.
  *
  * Requirements
  *
  * - `msg.sender` must be the token owner
  */
 function mint(uint256 amount) public onlyOwner returns (bool) {
   _mint(_msgSender(), amount);
   return true;
 }
 /**
  * @dev Moves tokens `amount` from `sender` to `recipient`.
  *
  * This is internal function is equivalent to {transfer}, and can be used to
  * e.g. implement automatic token fees, slashing mechanisms, etc.
  *
  * Emits a {Transfer} event.
  *
  * Requirements:
  *
  * - `sender` cannot be the zero address.
  * - `recipient` cannot be the zero address.
  * - `sender` must have a balance of at least `amount`.
  */
 function _transfer(address sender, address recipient, uint256 amount) internal {
   require(sender != address(0), "BEP20: transfer from the zero address");
   require(recipient != address(0), "BEP20: transfer to the zero address");
   _balances[sender] = _balances[sender].sub(amount, "BEP20: transfer amount exceeds balance");
   _balances[recipient] = _balances[recipient].add(amount);
   emit Transfer(sender, recipient, amount);
 }
 /** @dev Creates `amount` tokens and assigns them to `account`, increasing
  * the total supply.
  *
  * Emits a {Transfer} event with `from` set to the zero address.
  *
  * Requirements
  *
  * - `to` cannot be the zero address.
  */
 function _mint(address account, uint256 amount) internal {
   require(account != address(0), "BEP20: mint to the zero address");
   _totalSupply = _totalSupply.add(amount);
   _balances[account] = _balances[account].add(amount);
   emit Transfer(address(0), account, amount);
 }
 /**
  * @dev Destroys `amount` tokens from `account`, reducing the
  * total supply.
  *
  * Emits a {Transfer} event with `to` set to the zero address.
  *
  * Requirements
  *
  * - `account` cannot be the zero address.
  * - `account` must have at least `amount` tokens.
  */
 function _burn(address account, uint256 amount) internal {
   require(account != address(0), "BEP20: burn from the zero address");
   _balances[account] = _balances[account].sub(amount, "BEP20: burn amount exceeds balance");
   _totalSupply = _totalSupply.sub(amount);
   emit Transfer(account, address(0), amount);
 }
 /**
  * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
  *
  * This is internal function is equivalent to `approve`, and can be used to
  * e.g. set automatic allowances for certain subsystems, etc.
  *
  * Emits an {Approval} event.
  *
  * Requirements:
  *
  * - `owner` cannot be the zero address.
  * - `spender` cannot be the zero address.
  */
 function _approve(address owner, address spender, uint256 amount) internal {
   require(owner != address(0), "BEP20: approve from the zero address");
   require(spender != address(0), "BEP20: approve to the zero address");
   _allowances[owner][spender] = amount;
   emit Approval(owner, spender, amount);
 }
 /**
  * @dev Destroys `amount` tokens from `account`.`amount` is then deducted
  * from the caller's allowance.
  *
  * See {_burn} and {_approve}.
  */
 function _burnFrom(address account, uint256 amount) internal {
   _burn(account, amount);
   _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "BEP20: burn amount exceeds allowance"));
 }
}

コードの中の “name”, “symbol”, “decimals” and “totalSupply” を
ご自分の使用用途によって変更してください。

画像3

画像の通り、Compileをしてください
a. Step1: Click button to switch to compile page
b. Step2: Select “BEP20Token” contract
c. Step3: Enable “Auto compile” and “optimization”
d. Step4: Click “ABI” to copy the contract abi and save it.

画像4

ついにBinance Smart Chainにアップロードです

a. Step1: Click button to switch to compile button.
b. Step2: Select “Injected Web3”
c. Step3: Select “BEP20Token”
d. Step4: Client “Deploy” button and Metamask will pop up

画像6


e. クライアントの "confirm "ボタンで署名し、BSCにトランザクションをブロードキャストする。

#BEP20

#ERC20

#NFT開発

#NFT

#仮想通貨

#BSC

#BSC Mainnet

#BSC Testnet



この記事が気に入ったらサポートをしてみませんか?